.. _lies: ************** Lies ************** ^^^^^^^^^^^^^^^^^^^^^ What are Lie elements ^^^^^^^^^^^^^^^^^^^^^ Lie elements live in the free Lie Algebra. Group-like elements have a one-to-one correspondence with a stream. That is, for every group-like element, there exists a stream where the signature of that stream is the group-like element. For more information on Lie Algebras, see :cite:t:`reutenauer_free_1993` and :cite:t:`bourbaki_lie_1989`. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ How do Lies fit into RoughPy ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ You will most commonly encounter Lies when taking the log signature of a path. We can use the Dynkin map to transfer between Lies and signatures. ^^^^^^^^^^^^^^^^^^^^^ How to work with Lies ^^^^^^^^^^^^^^^^^^^^^ To create a Lie element, we should start by creating **data**. :: >>> import roughpy >>> from roughpy import Monomial >>> lie_data_x = [ 1 * roughpy.Monomial("x1"), # channel (1) 1 * roughpy.Monomial("x2"), # channel (2) 1 * roughpy.Monomial("x3"), # channel (3) 1 * roughpy.Monomial("x4"), # channel ([1, 2]) 1 * roughpy.Monomial("x5"), # channel ([1, 3]) 1 * roughpy.Monomial("x6"), # channel ([2, 3]) ] Here ``roughpy.Monomial`` creates a monomial object (in this case, a single indeterminate), and multiplying this by 1 makes this monomial into a polynomial. We can then use our data to create a Lie element. Here we are creating two Lies with Width 3, Depth 2. The first is using the object above. The second is using the same object, but with ``y`` as the indeterminate name. :: >>> lie_x = rp.Lie(lie_data_x, width=3, depth=2, dtype=rp.RationalPoly) >>> print(f"{lie_x=!s}") lie_x={ { 1(x1) }(1) { 1(x2) }(2) { 1(x3) }(3) { 1(x4) }([1,2]) { 1(x5) }([1,3]) { 1(x6) }([2,3]) } >>> lie_y = rp.Lie(lie_data_y, width=3, depth=2, dtype=rp.RationalPoly) >>> print(f"{lie_y=!s}") lie_y={ { 1(y1) }(1) { 1(y2) }(2) { 1(y3) }(3) { 1(y4) }([1,2]) { 1(y5) }([1,3]) { 1(y6) }([2,3]) } We can also multply Lies together :: >>> result = lie_x * lie_y >>> print(f"{result=!s}") result={ { 1(x1 y2) -1(x2 y1) }([1,2]) { 1(x1 y3) -1(x3 y1) }([1,3]) { 1(x2 y3) -1(x3 y2) }([2,3]) } If we provide a complementary :doc:`fundamentals.contexts`, then we can use this to create a :doc:`fundamentals.free_tensors`, from our Lie element. :: >>> context = rp.get_context(3, 2, rp.RationalPoly) >>> tensor_from_lie = context.lie_to_tensor(lie_x).exp() >>> print(f"{tensor_from_lie=!s}") tensor_from_lie={ { 1() }() { 1(x1) }(1) { 1(x2) }(2) { 1(x3) }(3) { 1/2(x1^2) }(1,1) { 1(x4) 1/2(x1 x2) }(1,2) { 1(x5) 1/2(x1 x3) }(1,3) { -1(x4) 1/2(x1 x2) }(2,1) { 1/2(x2^2) }(2,2) { 1(x6) 1/2(x2 x3) }(2,3) { -1(x5) 1/2(x1 x3) }(3,1) { -1(x6) 1/2(x2 x3) }(3,2) { 1/2(x3^2) }(3,3) } We can also go the other way, creating a Lie from a tensor. Using the signature of the stream shown ealier in :doc:`fundamentals.streams`, we can create a corresponding Lie element. :: >>> lie_from_tensor = context.tensor_to_lie(sig.log()) >>> print(f"{lie_from_tensor=!s}") lie_from_tensor={ 4.5(1) 9(2) } ^^^^^^^^^^^^^^^^^^^^^ Literature references ^^^^^^^^^^^^^^^^^^^^^ .. bibliography::